# How to Optimize the Performance of Your Hospital Boiler Plant: A Case Study



#### HESNI Annual Conference May 11, 2018

**Presenters:** 

Ryan Ollie, E.I.T., CEM, CMVP Manager of Energy Solutions, Advocate Health Care

Austin Rennick, P.E., CEM, CHFM, LEED AP BD+C

Manager of Facility Operations, Advocate Condell Medical Center

Dan Doyle, P.E., LEED AP O+M
Chairman, Grumman/Butkus Associates

Tim Jendrycki, P.E.

Associate, Grumman/Butkus Associates







# There Are Many Compelling Reasons for Hospitals to Conserve Energy (and Water)





# Hospital Gas Usage

## Year 2017 G/BA Hospital Energy and Water Benchmarking Survey For 2016 Fossil Fuel\* Energy Consumption (BTU/SF/YR)



12/6/2017 Copyright 2017 Grumman/Butkus Associates



# **Hospital Gas Cost**

## Year 2017 G/BA Hospital Energy and Water Benchmarking Survey For 2016 Fossil Fuel\* Energy Cost (\$/SF/YR)



Copyright 2017 Grummar/Butkus Associates





# ASHE Benchmarking Data: Cost Breakdown of Facility Budgets

- Energy represents more than half of the healthcare facility budget, according to current benchmarking data from the American Society for Healthcare Engineering.
- That's more than staffing, materials, and service contracts combined.





# What Are Some Energy-Saving Opportunities?

- Use less steam
- Watch your water treatment
- Reduce/eliminate vented steam and condensate losses
- Minimize radiant heat losses
- Minimize steam production losses
- Maximize combustion efficiency
- ➤ Recover waste heat from flue, deaerator vent for heating domestic hot water, make-up water, boiler feedwater, or combustion air





# First, Some Boiler Plant Basics

- ➤ When to use steam vs. hot water
- Different boiler types
- > Burners
  - o Forced-draft vs. atmospheric
- > Ancillary steam plant equipment
- Surge tank, condensate pumps
- Deaerator, feedwater pumps
- > Flue, breeching, stack
- Steam traps





### Hot Water vs. Steam

- ➤ Hot water is the best option for heating
  - Lowest maintenance cost
  - o Highest efficiency
- ➤ Steam is generally used for process needs (sterilizers, humidifiers) when higher temperatures are needed or when large campus distribution is necessary.



## Typical Hospital Steam Energy Balance





# Typical Hospital Boiler Steam Demand Distribution vs. Outdoor Air Temperature





# Typical Hospital Boiler Steam Demand Distribution vs. Outdoor Air Temperature with Temperature Bin Hours





# A Typical Steam Plant Configuration





### What Are the "Passes" in a Firetube Boiler?



**One-Pass** 



Three-Pass



**Two-Pass** 



**Four-Pass** 



# Different Types of Firetube Boilers



**Dry-Back Firetube Boiler** 



Wet-Back Firetube Boiler



## **Water-Tube Boilers**





**Water-Tube Boilers** 



## The Deaerator



**Typical Deaerator** 



Condensate Receiver/Deaerator Combo



# What Are Some Energy-Saving Opportunities?

- ➤ Use less steam
- ➤ Watch your water treatment
- ➤ Reduce/eliminate vented steam and condensate losses
- ➤ Minimize radiant heat losses
- Minimize steam production losses
- Maximize combustion efficiency
- ➤ Recover waste heat from flue, deaerator vent for heating domestic hot water, make-up water, boiler feedwater, or combustion air





# A Typical Steam Plant Configuration





## Pay Attention to Your Water Treatment





# Reduce/Eliminate Vented Steam, Condensate Going to Drain

Looking for leaking steam traps, PRVs, condensate being dumped







# Reduce/Eliminated Vented Steam, Condensate Going to Drain

Looking for leaking steam traps, PRVs, condensate being dumped





Leaking Steam Trap



### Minimize Radiant Heat Losses

- ➤ Lower operating pressure (governed by process requirements)
- Repair damaged or missing insulation on piping and heated vessels









Minimize Steam Production Losses (Blowdown, Deaerator) 10% OF MASS AS FLASH STEAM, @5PSI TO DA

Blowdown heat recovery



**BLOWDOWN HEAT RECOVERY** 



BOILER

# **RO System for M-U Water Treatment**





# **Maximize Combustion Efficiency**

 $\triangleright$  Minimize  $O_2$  / excess air without sooting









### **Boiler Flue Stack Economizers**

- ➤ Where to use recovered heat?
  - o Boiler feedwater
  - o Boiler make-up water
  - o Domestic hot water







### **Recover Heat From DA Vent**

#### **Engineering Data**

Table 4 Heat Exchanger Nominal Performance

| Heat              | Nominal Capacity |           | Hot Water |       |               | Cold Water |      |        |               |      |
|-------------------|------------------|-----------|-----------|-------|---------------|------------|------|--------|---------------|------|
| Exchanger<br>Type |                  |           | Flow      |       | Pressure drop |            | Flow |        | Pressure drop |      |
|                   |                  | Btu/hr    | 1/min     | USGPM |               |            | Umin | USGPM  |               | prig |
| B 45              | 13               | 45.000    | 23        | 6.08  | 6.2           | 0.90       | 150  | 39.63  | 7.4           | 1,07 |
| B 70              | 20               | 70.000    | 25        | 6,60  | 7.5           | 1.09       | 170  | 44.91  | 9.2           | 1.33 |
| B 130             | 38               | 130.000   | 27        | 7.13  | 8.1           | 1.17       | 200  | 52.83  | 11.4          | 1.65 |
| B 180             | 53               | 180.000   | -30       | 7.93  | 2.7           | 0.40       | 210  | 55.48  | 7.5           | 1,10 |
| B 250             | 73               | 250,000   | 35        | 9.25  | 4.2           | 0.60       | 270  | 71.33  | 12.0          | 1.70 |
| B 300             | 88               | 300.000   | 40        | 10.57 | 6.4           | 0.90       | 300  | 79.25  | 17.0          | 2.50 |
| B 400             | 117              | 400,000   | 46        | 12.42 | 7.8           | 1.13       | 342  | 90.10  | 20.0          | 2.90 |
| B 500             | 146              | 500.000   | 55        | 14.53 | 9.2           | 1.30       | 360  | 95.10  | 22.0          | 3.20 |
| B 1000            | 293              | 1.000.000 | 95        | 25.10 | 16.2          | 2.35       | 705  | 185.24 | 29.1          | 4.22 |

Nominal values are based on 60°C (140°F) temperature difference between incoming heating and heated water



Standard Materials:

316 L Stainless Steel, Titanium

Maximum Allowable Working Pressure:

SS 316 L 1.03 MPa (150 psig) Titanium 1.03MPa (150 psig)

Maximum Allowable Working Temperature:

SS 316 L 208°C (406°F) Titanium 190°C (375°F)

Table 5 Advanced B Series Stainless Steel - 316L

| Туре   |              | A             | В             | C            | D                   |        |      | Heat Transfer Area |
|--------|--------------|---------------|---------------|--------------|---------------------|--------|------|--------------------|
| une.   |              |               |               |              |                     | mingh) |      |                    |
| B 45   | 267 (10.51)  |               | 111.5 (4.39)  | 77.5 (3.05)  | 00 (2.45)           | 1.     |      | 0.183 (1.97)       |
| B 70   | 345 (13.58)  | 106 (4.17)    | 175 (6.89)    | 85 (3.35)    | 80 (3.15)           |        |      | 0.259 (2.79)       |
| B 130  | 395 (15.55)  |               | 225 (8.86)    | 02 (3.33)    |                     |        | 3/4* | 0.307 (3.30)       |
| B 180  | 383 (15.08)  |               | 193 (7.60)    |              |                     | 1-1/2" | 1000 | 0.465 (4.91)       |
| B 250  | 513 (20.20)  | diam's always | 323 (12.72)   |              |                     |        |      | 0.677 (7.29)       |
| B 300  | 632 (24.88)  | 128 (5.04)    | 442 (17.40)   | 95 (3.74)    | 101.6 (4.0)         |        | 11   | 0.871 (9.38)       |
| B 400  | 747 (29.41)  |               | 557 (21.93)   |              |                     |        |      | 1.058 (11.39)      |
| B 500  | 1085 (42.72) |               | 884 (34.80)   | 100.5 (3.96) | THE PERSON NAMED IN | 144    |      | 1.609 (17.32)      |
| B 1000 | 917 (36.10)  | 167 (6.57)    | 676.5 (26.63) | 120 (4.72)   | 139.7 (5.5)         | 2"     | 2"   | 2.200 (23.68)      |





# Case Study: Advocate Health Care Phase 1

➤ New burners on 10 boilers at six hospitals









# Case Study: Advocate Health Care Phase 2

Recover heat from flue gas and DA vents at 10 hospitals









### **Originally Planned Scope of Project for Individual Sites**

| BroMenn Medical Center    | Vent<br>Condenser | (1) Stack Economizer<br>(1) Steam Boiler                          | Domestic Water<br>Heating |                      |
|---------------------------|-------------------|-------------------------------------------------------------------|---------------------------|----------------------|
| Christ Medical Center     | Vent<br>Condenser | (3) Stack Economizers (3) Steam Boilers                           | Domestic Water<br>Heating |                      |
| Condell Medical Center    | Vent<br>Condenser | (1) Stack Economizer on common vent with (2) Boilers              | Domestic Water<br>Heating |                      |
| Good Samaritan Hospital   | Vent<br>Condenser | (2) Stack Economizers (2) Steam Boilers                           | Domestic Water<br>Heating |                      |
| Good Shepherd Hospital    | Vent<br>Condenser | (2) Stack Economizers (2) Steam Boilers                           | Domestic Water<br>Heating |                      |
| Illinois Masonic          |                   | <ul><li>(1) Stack Economizer</li><li>(1) Steam Boiler</li></ul>   |                           | Feedwater<br>Heating |
| Lutheran General Hospital | Vent<br>Condenser |                                                                   |                           |                      |
| South Suburban Hospital   | Vent<br>Condenser | <ul><li>(2) Stack Economizers</li><li>(2) Steam Boilers</li></ul> |                           | Feedwater<br>Heating |
| Sherman Hospital          | Vent<br>Condenser | (2) Stack Economizers (2) Steam Boilers                           |                           | Feedwater<br>Heating |
| Trinity Hospital          | Vent<br>Condenser | <ul><li>(1) Stack Economizer</li><li>(1) Steam Boiler</li></ul>   | Domestic Water<br>Heating |                      |



### **Scope of Project as Actually Implemented**

| BroMenn Medical Center  | Vent<br>Condenser | (1) Stack Economizer (1) Steam Boiler                             | Domestic Water<br>Heating |                      |
|-------------------------|-------------------|-------------------------------------------------------------------|---------------------------|----------------------|
| Christ Medical Center   | Vent<br>Condenser | <ul><li>(1) Stack Economizers</li><li>(1) Steam Boilers</li></ul> | Domestic Water<br>Heating |                      |
| Condell Medical Center  | Vent<br>Condenser | (1) Stack Economizer on common vent with (2) Boilers              | Domestic Water<br>Heating |                      |
| Good Samaritan Hospital | Vent<br>Condenser | (2) Stack Economizers (2) Steam Boilers                           | Domestic Water<br>Heating |                      |
| Good Shepherd Hospital  | Vent<br>Condenser | (2) Stack Economizers (2) Steam Boilers                           | Domestic Water<br>Heating |                      |
| Illinois Masonic        |                   | <ul><li>(1) Stack Economizer</li><li>(1) Steam Boiler</li></ul>   |                           | Feedwater<br>Heating |



### **DA Tank Vent Condenser**

- ➤ DA vent releases dissolved gasses to atmosphere
- ➤ Normally based on 0.5% of total mass flow rate of DA tank
- Established and set at maximum design condition but operates at same flow rate at all reduced conditions
- Recovery fluid is heated from condensing vent steam
- ➤ Recovery fluid can overheat and "steam" if flow is stopped or too low
- ➤ Heating untreated make-up water above 180°F can scale the heat exchanger



### **DA Tank Vent Condenser**





# Effect of Entering Water Temperature on Vent Condenser Effectiveness

Vent Condenser Output vs. Entering Water Temperature



**Vent Condenser Entering Water Temperature (deg F)** 



### **Boiler Flue Stack Economizers**





## **Typical HP Steam Plant Operating Parameters**





# **Domestic Water Heating**





➤ Do one measure at multiple sites in lieu of multiple measures at one site

#### o Pros:

- Get better pricing
- Dealing with single vendor/contractor
- Consistency of approach/implementation across all sites

#### o Cons:

- Managing/coordinating with multiple boiler room operators, each with different ideas and preferences
- Coordinating project at multiple construction sites simultaneously



- Pre-purchase major equipment
  - o Get a single manufacturer
  - Owner picks "best value" product instead of contractor selecting lowest price
    - Life Cycle vs. First Cost
  - o Cuts delivery time





- Limit Change Orders
  - o Budget for control points!
    - Sensors (inlet/outlet of every heat recovery device)
    - BAS trend setup
    - You need to be able to verify/prove savings to justify investment to senior leadership
  - o Maintenance
    - Discovered potential accessibility issues for routine maintenance
    - Added steel platforms/catwalks at half of the sites

| To Owner:<br>From (Contri | ADVOCATE HEALTH CA             | RE                |
|---------------------------|--------------------------------|-------------------|
| Project:                  | ADVOCATE BOILER PLA            | ANT OPT           |
| Item<br>Number            | Description                    | Schedule<br>Value |
| 91003                     | ILL MASONIC & BROMENN ADDTL TC | 12,7              |
| 9201                      | BROMENN BLR RM CATWALK         | 24,7              |
| 9202                      | CONDELL ADD PUSH/PULL SWITCH   | 1,9               |
| 9990                      | ADVOCATE ILL MASONIC PLATFORM  | 49,7              |
| 9991                      | CHRIST REDESIGN CREDIT         | -5,30             |
| 9992                      | GOOD SAM SIEMENS ADD WIRE/DEV  | 13,80             |
|                           |                                |                   |





- ➤ Miscellaneous
  - Spend more time and money up front to better detail scope/budget
  - Carry some contingency funds
    - Operators at each site have different needs and ideas
    - Carrying some extra money to accommodate reasonable requests creates good will, helps get buy-in





- Maximize utility incentives
  - o Burners
    - Total project cost: \$1.6 million
    - Utility incentives: \$830,700
  - Heat Recovery
    - Total project cost:~ \$1.9 million
    - Utility incentives:\$281,266

| Utility Incentives |                                       |  |  |  |  |
|--------------------|---------------------------------------|--|--|--|--|
| Nicor              | \$555,300                             |  |  |  |  |
| Peoples Gas        | \$202,000                             |  |  |  |  |
| North Shore Gas    | \$53,400                              |  |  |  |  |
| ComEd              | \$20,000 (for new VFDs on fan meters) |  |  |  |  |
| Total              | \$830,700                             |  |  |  |  |



- Metering
  - o Install extensive boiler plant metering to be able to closely track gas/steam usage, blowdown, make-up water. This is essential to allow the team to run trends and track boiler plant efficiency
- ➤ Use blowdown and M-U meters to get a reduced sewer bill





# Thank You.....Questions?

#### Ryan Ollie

ryan. ollie@advocate health.com

#### **Austin Rennick**

austin.rennick@advocatehealth.com

#### Dan Doyle

ddoyle@grummanbutkus.com

#### Tim Jendrycki

tjendrycki@grummanbutkus.com



